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SUMMARY
CRISPR genome engineering and single-cell RNA sequencing have accelerated biological discovery.
Single-cell CRISPR screens unite these two technologies, linking genetic perturbations in individual
cells to changes in gene expression and illuminating regulatory networks underlying diseases. Despite
their promise, single-cell CRISPR screens present considerable statistical challenges. We demonstrate
through theoretical and real data analyses that a standard method for estimation and inference in single-
cell CRISPR screens—“thresholded regression”—exhibits attenuation bias and a bias-variance tradeoff
as a function of an intrinsic, challenging-to-select tuning parameter. To overcome these difficulties, we
introduce GLM-EIV (“GLM-based errors-in-variables”), a new method for single-cell CRISPR screen
analysis. GLM-EIV extends the classical errors-in-variables model to responses and noisy predictors that
are exponential family-distributed and potentially impacted by the same set of confounding variables. We
develop a computational infrastructure to deploy GLM-EIV across hundreds of processors on clouds (e.g.
Microsoft Azure) and high-performance clusters. Leveraging this infrastructure, we apply GLM-EIV to
analyze two recent, large-scale, single-cell CRISPR screen datasets, yielding several new insights.

KEYWORDS: CRISPR; GLM; mixture model; parallel computing; single cell.

1. IN TRODUCTION
CRISPR is a genome engineering tool that has enabled scientists to precisely edit human and
nonhuman genomes, opening the door to new medical therapies (Musunuru et al. 2021) and accel-
erating biological discovery (Przybyla and Gilbert 2022). Recently, scientists have paired CRISPR
genome engineering with single-cell RNA sequencing (Datlinger et al. 2017). The resulting assays,
known as “single-cell CRISPR screens,” link genetic perturbations in individual cells to changes in
gene expression. Single-cell CRISPR screens have enabled breakthrough progress on longstanding
challenges in genetics, such as causally mapping genome wide association study (GWAS) variants
to target genes at genome-wide scale (Morris et al. 2023).
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Despite their promise, single-cell CRISPR screens present considerable statistical challenges.
One difficulty is that the “treatment”—i.e. the presence or absence of a CRISPR perturbation—
is assigned randomly to cells and is not directly observable. As a consequence, one cannot know
with certainty which cells were perturbed. Instead, one must leverage an indirect, quantitative
proxy of perturbation presence or absence to “guess” which cells received a perturbation. This
indirect proxy takes the form of a so-called guide RNA count, with higher counts indicating that
a cell is more likely to have been perturbed. A standard approach to single-cell CRISPR screen
analysis is to impute perturbation assignments onto the cells by simply thresholding the guide
RNA counts; using these imputations, one can attempt to estimate the effect of the perturbation
on gene expression. We call this standard approach “thresholded regression” or the “thresholding
method.”

We study estimation and inference in single-cell CRISPR screens from a statistical perspective,
formulating the data-generating mechanism using a new class of measurement error models. We
assume that the response variable y is a GLM of an underlying predictor variable x∗ and vector of
confounders z. We do not observe x∗ directly; rather, we observe a noisy version x of x∗ that itself
is a GLM of x∗ and the same set of confounders z. The goal of the analysis is to estimate the effect
of x∗ on y using the observed data (x, y, z) only. In the context of the biological application, x∗, x, y,
and z are CRISPR perturbations, guide RNA counts, gene expressions, and technical confounders,
respectively.

Our work makes two main contributions. First, we conduct a detailed study of the thresholding
method. Notably, we demonstrate on real data that the thresholding method exhibits attenuation
bias and a bias-variance tradeoff as a function of the selected threshold, and we recover these
phenomena in precise mathematical terms in a simplified Gaussian setting. Second, we introduce a
newmethod,GLM-EIV (“GLM-based errors-in-variables”), for single-cellCRISPR screen analysis.
GLM-EIV extends the classical errors-in-variables model (Carroll et al. 2006) to responses and
noisy predictors that are exponential family-distributed and potentially impacted by the same set
of confounding variables. GLM-EIV thereby implicitly estimates the probability that each cell was
perturbed, obviating the need to explicitly impute perturbation assignments via thresholding. We
implement several statistical accelerations to bring the cost of GLM-EIV down to within about an
order of magnitude of the thresholding method. We additionally develop a Docker-containerized
application to deploy GLM-EIV at-scale across tens or hundreds of processors on clouds (e.g.
Microsoft Azure) and high-performance clusters.

Our analyses indicate that single-cell CRISPR screens fall into two main problem settings:
the more challenging “high background contamination” setting and the easier “low background
contamination” setting. GLM-EIV outperforms thresholded regression by a considerable margin
in the high background contamination setting; in the low background contamination setting, by
contrast, GLM-EIV and thresholded regression perform similarly, provided that accurate guide
RNA-to-cell assignments are used within the thresholded regression model. We show that a
simplified version of GLM-EIV can be used to obtain these guide RNA-to-cell assignments in the
low background contamination setting, thereby neutralizing a tuning parameter that until this point
has been challenging to select.

2. A SS AY BACKGROUND
There are several classes of single-cell CRISPR screen assays, each suited to answer a different
set of biological questions. In this work we mostly focus on high-multiplicity of infection (MOI)
single-cell CRISPR screens, which we motivate and describe here. The human genome consists
of genes, enhancers (segments of DNA that regulate the expression of one or more genes), and
other genomic elements. GWAS have revealed that the majority (>90%) of variants associated
with diseases lie outside genes and inside enhancers (Gallagher and Chen-Plotkin 2018). These
noncoding variants are thought to contribute to disease by modulating the expression of one or
more disease-relevant genes. Scientists do not know the gene (or genes) through which most
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Figure 1. Experimental design and analysis challenges: a) Experimental design. For a given perturbation
(e.g. the perturbation indicated in blue), we partition the cells into two groups: perturbed and
unperturbed. Next, for a given gene, we conduct a differential expression analysis across the two groups,
yielding an estimate of the impact of the given perturbation on the given gene. b) DAG representing all
variables in the system. The perturbation (latent) impacts both gene expression and gRNA expression;
technical factors act as confounders, also impacting gene and gRNA expression. The target of estimation
is the effect of the perturbation on gene expression. c) Schematic illustrating the “background read”
phenomenon. Due to errors in the sequencing and alignment processes, unperturbed cells exhibit a
nonzero gRNA count distribution (bottom). The target of estimation is the change in mean gene
expression in response to the perturbation (top). d), Example data on four cells for a given
perturbation–gene pair. Note that (i) the perturbation is unobserved and (ii) the gene and gRNA data are
discrete counts.

noncoding variants exert their effect, limiting the interpretability of GWAS results. A central open
challenge in genetics, therefore, is to link enhancers that harbor GWAS variants to the genes that
they target at genome-wide scale (Morris et al. 2023).

High-MOI single-cell CRISPR screens are a promising emerging technology for resolving this
challenge (Morris et al. 2023; Mostafavi et al. 2023). High-MOI single-cell CRISPR screens com-
bine CRISPR interference (CRISPRi)—a version of CRISPR that represses a targeted region of the
genome—with single-cell sequencing. The experimental protocol is as follows. First, the scientist
develops a library of several hundred to several thousand CRISPRi perturbations, each designed to
target a candidate enhancer for repression.The scientist then cultures tensorhundredsof thousands
of cells and delivers the CRISPRi perturbations to these cells. The perturbations assort into the
cells randomly, with each cell receiving on average 10–40 distinct perturbations. Conversely, a given
perturbation enters about 0.1–2% of cells (this work).

After waiting several days for CRISPRi to take effect, the scientist profiles each cell’s transcrip-
tome (i.e. its gene expressions) and the set of perturbations that it received. Finally, the scientist
conducts perturbation-to-gene association analyses. Figure 1a depicts this process schematically,
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with colored bars (blue, red, and purple) representing distinct perturbations. For a given perturba-
tion (e.g. the perturbation represented in blue), the scientist partitions the cells into two groups:
those that received the perturbation (top) and those that did not (bottom). Next, for a given gene,
the scientist runs a differential expression analysis across the two groups of cells, producing an
estimate for the magnitude of the gene expression change in response to the perturbation. If the
estimated change in expression is large, the scientist can conclude that the enhancer targeted by the
perturbation exerts a strong regulatory effect on the gene. This procedure is repeated for a large set
of preselected perturbation–gene pairs. The enhancer-by-enhancer approach is valid because the
perturbations assort into cells approximately independently of one another.

The genomics literature has produced several methods for high-MOI single-cell CRISPR
screen analysis (Gasperini et al. 2019; Xie et al. 2019; Barry et al. 2021; Wang 2021). For example,
Gasperini et al. applied negative binomial GLMs (as implemented in the Monocle software;
Trapnell et al. (2014)) to carry out the differential expression analysis described above. Moreover,
Xie et al. applied chi-squared-like tests of independence for this purpose. Unfortunately, both of
these approaches have limitations: the former can break down when the gene expression model
is misspecified, and the latter does not adjust for the presence of technical confounders. In a
prior work we introduced SCEPTRE, a custom implementation of the conditional randomization
test (Candès et al. 2018; Liu et al. 2022) tailored to single-cell CRISPR screen data. SCEPTRE
simultaneously adjusts for confounder presence and ensures robustness to expression model
misspecification, thereby overcoming limitations of previous approaches and demonstrating
improved sensitivity and specificity on single-cell CRISPR screen data. In this work we tackle a
set of analysis challenges complimentary to those addressed by SCEPTRE. Most importantly, we
seek to account for the fact that the perturbation is measured with noise. Additionally, we seek to
estimate (with confidence) the effect size of a perturbation on gene expression change, an objective
that we did not consider in the original SCEPTRE study.

3. A N A LYSIS CH A LLENGES A ND PROPOSED STATISTIC A L MODEL
High-MOI single-cell CRISPR screens present several statistical challenges, four of which we
highlight here. Throughout, we consider a single perturbation–gene pair. First, the “treatment”
variable—i.e. the presence or absence of a perturbation—cannot be directly observed. Instead,
perturbed cells transcribe molecules called guide RNAs (or gRNAs) that serve as indirect proxies
of perturbation presence. We must leverage these gRNAs to impute (explicitly or implicitly)
perturbation assignments onto the cells (Fig. 1b). Second, “technical factors”—sources of variation
that are experimental rather than biological in origin—impact the measurement of both gene and
gRNA expressions and therefore act as confounders (Fig. 1b). Third, the gene and gRNA data are
sparse, discrete counts. Consequently, classical statistical approaches that assume Gaussianity or
homoscedasticity are not directly applicable. Finally, sequenced gRNAs sometimesmap to cells that
have not received a perturbation. This phenomenon, which we call “background contamination,”
results from errors in the sequencing and alignment processes. The marginal distribution of the
gRNA counts is best conceptualized as a mixture model (Fig. 1c; Gaussian distributions used for
illustration purposes only). Unperturbed and perturbed cells both exhibit nonzero gRNA count
distributions, but this distribution is shifted upward for perturbed cells. Figure 1d shows example
data on four (of possibly tens or hundreds of thousandsof) cells.The analysis objective is to leverage
the gene expressions and gRNA counts to estimate the effect of the (latent) perturbation on gene
expression, accounting for the technical factors.

We propose to model the single-cell CRISPR screen data-generating process using a pair of
GLMs. Let n ∈ N be the number of cells assayed in the experiment. Consider a single perturbation
and a single gene. For cell i ∈ {1, . . . , n}, let pi ∈ {0, 1} indicate perturbation presence or absence; let
mi ∈ N be the number of gene transcripts sequenced; let gi ∈ N be the number of gRNA transcripts
sequenced; let dm

i ∈ N be the number of gene transcripts sequenced across all genes (i.e. the
library size or sequencing depth); let dg

i be the gRNA library size; and finally, let zi ∈ R
d−2 be the
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cell-specific covariates, including sequencing batch, percent mitochondrial reads, etc. (We note that
most single-cellCRISPR screens have been carriedout on cell lines consisting of a uniformcell type;
however, if multiple cell types are present in the data, then cell type could be included as a covariate
in the model.) The letters “m,” “g”, and “d” stand for “mRNA,” “gRNA,” and “depth,” respectively.

Building on the work of several previous authors (Robinson and Smyth 2008; Townes et al.
2019; Hafemeister and Satija 2019), Sarkar and Stephens (2021) proposed a simple strategy for
modeling single-cell gene expression data, which, in the framework of negative binomial GLMs,
is equivalent to using the log-transformed library size as an offset term. Sarkar and Stephens’
framework enjoys strong theoretical and empirical support; therefore, we generalize their approach
to model both gene and gRNA modalities in single-cell CRISPR screen experiments. To this end we
assume that the gene expression counts are given by

mi|(pi, zi, dm
i ) ∼ NBsm(μm

i ); log(μm
i ) = βm

0 + βm
1 pi + γ T

m zi + log(dm
i ), (3.1)

where (i) NBsm(μm
i ) is a negative binomial distribution with mean μm

i and known size parameter
sm; (ii) βm

0 ∈ R, βm
1 ∈ R, and γm ∈ R

d−2 are unknown parameters; and (iii) log(dm
i ) is an offset

term. (We note that the “size parameter” is simply the inverse of the negative binomial dispersion
parameter; “size parameter” does not refer to library size in this context.) Similarly, we model the
gRNA counts by

gi|(pi, zi, dg
i ) ∼ NBsg

(
μ

g
i
)
; log(μg

i ) = β
g
0 + β

g
1pi + γ T

g zi + log(dg
i ), (3.2)

where μ
g
i , sg , β

g
0 , β

g
1 , γg , and dg

i are analogous. We use a negative binomial GLM to model the
gRNA counts as well as the gene expressions because the gRNA transcripts are generated via
the same biological mechanism as the gene transcripts (Datlinger et al. 2017; Hill et al. 2018).
We model the marginal perturbation as pi ∼ Bern(π), where pi is an unobserved binary variable
indicating presence (pi = 1) or absence (pi = 0) of the perturbation. We restrict π , the probability
of perturbation, to the interval (0, 1/2] to ensure that the model is identifiable; this restriction is
reasonable given that each perturbation infects only a small fraction of cells. The gRNA intercept
term β

g
0 controls the ambient level of gRNA expression, i.e. the rate at which gRNA reads are

generated in the absence of the perturbation. The perturbation coefficient β
g
1 controls the extent

to which perturbed and unperturbed cells differentially express the gRNA; the target of inference
βm

1 is challenging to estimate when β
g
1 is close to zero, as the gRNA distributions of the perturbed

and unperturbed cells are hard to differentiate in this region of the problem space. Together, (3.1),
(3.2), and the marginal distribution of pi define the negative binomial GLM-EIV model.

The log-transformed sequencing depth log(dm
i ) is included as an offset term in (3.1) so that

βm
0 + βm

1 pi + γ T
m zi can be interpreted as a relative expression. Exponentiating both sides of (3.1)

reveals that themean gene expressionμm
i of the ith cell is exp

(
βm

0 + βm
1 pi + γ T

m zi
)

dm
i . Because dm

i
is the sequencing depth, exp

(
βm

0 + βm
1 pi + γ T

m zi
)
is the fraction of all transcripts sequenced in the

cell produced by the gene under consideration. The target of inference βm
1 is the log fold change in

expression in response to the perturbation, controlling for the technical factors. Fold change in this
context is the ratio of the mean gene expression in perturbed cells to the mean gene expression in
unperturbed cells. Hence, exp(βm

1 ) = 1 (i.e. βm
1 = 0) indicates no change in expression, whereas

exp(βm
1 ) > 1 (i.e. βm

1 > 0) and exp(βm
1 ) < 1 (i.e. βm

1 < 0) indicate an increase and decrease in
expression, respectively.

In this work we analyzed two large-scale, high-MOI, single-cell CRISPR screen datasets pub-
lished by Gasperini et al. (2019) and Xie et al. (2019). Gasperini (resp., Xie) targeted approxi-
mately 6,000 (resp., 500) candidate enhancers in a population of approximately 200,000 (resp.,
100,000) cells. Gasperini additionally designed several hundred positive control, gene-targeting
perturbations and 50 nontargeting, negative control perturbations to assess method sensitivity and
specificity.
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4. A N A LYSI S OF TH E TH R E SHOLDI NG M ETHOD
We studied thresholding from empirical and theoretical perspectives, highlighting several potential
limitations of the approach. In the context of the negative bionomial GLM-EIV model introduced
above (3.1–3.2), the thresholding method leverages the gRNA counts (3.2) to impute the latent
perturbation indicator (3.2), thereby reducing the full data-generating process to a single, gene
expression model (3.1). We studied Gasperini et al.’s variant of the thresholding method (i.e.
thresholded negative binomial regression), as this version of the thresholding method is standard
and relates most closely to GLM-EIV. The method is defined as follows:

1. For a given threshold c ∈ N, let the imputed perturbation assignment p̂i ∈ {0, 1} be given by
p̂i = 0 if gi < c and p̂i = 1 otherwise.

2. Assume that mi is related to p̂i, dm
i , and zi through the following GLM:

mi|(p̂i, zi, dm
i ) ∼ NBsm(μm

i ); log(μm
i ) = βm

0 + βm
1 p̂i + γ T

m zi + log
(
dm

i
)
. (4.3)

The model (4.3) is equivalent to the model (3.2), but the latent perturbation indicator pi has
been replaced by the imputed perturbation indicator p̂i.

3. Fit a GLM to (4.3) to obtain an estimate and CI for the target of inference βm
1 .

To shed light on empirical challenges of the thresholding method, we applied thresholded
negative binomial regression to analyze the set of positive control perturbation–gene pairs in
the Gasperini dataset. The positive control pairs consisted of perturbations that targeted gene
transcription start sites (TSSs) for inhibition. Repressing the TSS of a given gene decreases its
expression; therefore, the positive control pairs a priori are expected to exhibit a strong decrease
in expression.

To investigate the sensitivity of the thresholding method to threshold choice, we deployed the
method using three different choices for the threshold: 1, 5, and 20. We found that the chosen
threshold substantially impacted the results (Fig. 2a, b): estimates for fold change produced by
threshold = 1 were smaller in magnitude (i.e. closer to the baseline of 1) than those produced by
threshold = 5 (Fig. 2a). On the other hand, estimates produced by threshold = 5 and threshold =
20 were more concordant (Fig. 2b).

We reasoned that thresholded regression systematically underestimated true effect sizes on the
positive control pairs, especially for threshold = 1. For a given perturbation, the majority (> 98%)
of cells are unperturbed. This imbalance leads to an asymmetry: misclassifying unperturbed cells
as perturbed is intuitively “worse” than misclassifying perturbed cells as unperturbed. Misclassified
unperturbed cells contaminate the set of truly perturbed cells, leading to attenuation bias; by
contrast, misclassified perturbed cells are swamped in number and “neutralized” by the truly
unperturbed cells. Setting the threshold to a large number reduces the unperturbed-to-perturbed
misclassification rate, decreasing bias.

We hypothesized, however, that the reduction in bias obtained by selecting a large threshold
causes the variance of the estimator to increase. To investigate, we compared P-values and confi-
dence intervals produced by threshold = 5 and threshold = 20 for the target of inference βm

1 . We
found that threshold = 5 yielded smaller (i.e. more significant) P-values and narrower confidence
intervals than did threshold = 20 (Fig. 2c, d). We concluded that the threshold controls a bias-
variance tradeoff: as the threshold increases, the bias of the estimator decreases and the variance
increases.

Finally, to determine whether there is an “obvious” location at which to draw the threshold, we
examined the empirical gRNA count distribution of a gRNA from the Gasperini (Fig. 2e) and Xie
(Fig. 2f) dataset (counts of 0 omitted). The distributions peaked at 1 and then tapered off gradually;
there did not exist a sharp boundary that cleanly separated the perturbed from the unperturbed
cells. Overall, we concluded that the thresholding method faces several challenges: (i) the threshold
is a tuning parameter that significantly impacts the results; (ii) the threshold mediates an intrinsic
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Figure 2. Empirical challenges of thresholded regression. a, b) Estimates for fold change (i.e. exp(βm
1 ) in

model (4.3)) produced by threshold = 5 versus threshold = 1 (a) and threshold = 5 versus threshold = 20
(b). The selected threshold substantially impacts the results. c, d) P-values (c) and CI widths (d)
produced by threshold = 5 versus threshold = 20. The P-values correspond to a test of the null hypothesis
H0 : βm

1 = 0, i.e. a log fold change in gene expression of zero. A threshold of five yields more significant
P-values and more confident estimates. e, f) Empirical distribution of a gRNA from Gasperini (e) and Xie
(f) data (0 counts not shown). These gRNA count distributions do not appear to imply an obvious
threshold.

bias-variance tradeoff; and (iii) the gRNA count distributions may not imply a clear threshold
selection strategy.

Next, we studied the thresholding method from a theoretical perspective, recovering in a sim-
plified Gaussian setting phenomena revealed in the empirical analysis. Due to space constraints,
we relegate this analysis to Supplementary Appendix A, but we briefly summarize the main results
here. First, we derived an exact expression for the asymptotic relative bias of the thresholding
estimator β̂m

1 . Leveraging this exact expression, we showed that (i) the thresholding estimator
strictly underestimates (in absolute value) the true value of βm

1 over all choices of the threshold
and over all values of the regression coefficients (an example of attenuation bias; Stefanski (2000));
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and (ii) themagnitudeof the bias decreasesmonotonically inβ
g
1 , comportingwith the intuition that

the problembecomes easier as the gRNAmixture distributionbecomes increasinglywell-separated.
Second, we derived an asymptotically exact bias-variance decomposition for β̂m, demonstrating
that as the threshold tends to infinity, the bias decreases and the variance increases.

5. GL M-BA SED ER ROR S -I N-VA R I A BLE S
We introduce the general GLM-EIV (GLM-based errors-in-variables) model, which generalizes the
negativebinomialGLM-EIVmodel (3.1–3.2) to arbitrary exponential family responsedistributions
and link functions, therebyprovidingmuchgreatermodelingflexibility.Wederive efficientmethods
for estimation and inference in this model and develop a pipeline to deploy the model at-scale.

5.1. Model and model properties
The general GLM-EIV model uses an arbirary GLM to model the gene and gRNA modalities:

mi|(pi, zi, om
i ) ∼ fm(μm

i ); rm(μm
i ) = βm

0 + βm
1 pi + γ T

m zi + om
i , (5.4)

gi|(pi, zi, og
i ) ∼ fg(μ

g
i ); rg(μ

g
i ) = β

g
0 + β

g
1pi + γ T

g zi + og
i . (5.5)

Here, fm (resp., fg) is an exponential family distribution with mean μm
i (resp., μ

g
i ); rm and rg

are the link function for the gene and gRNA models, respectively; and om
i and og

i are the (possibly
zero) offset terms for the gene and gRNA models. In practice, we typically set om

i and og
i to the

log-transformed library sizes (i.e. log(dm
i ) and log(dg

i )). Again, we assume that the unobserved
perturbation indicator pi is drawn from a Bern(π) distribution. More model details are available
in Supplementary Appendix B.

The GLM-EIV model can be seen as a generalization of the simple errors-in-variables model
(when the predictor is binary); the latter is defined as follows:

yi = β0 + β1x∗
i + εi; xi = x∗

i + τi, (5.6)

where, x∗
i ∼ Bern(π), εi, τi ∼ N(0, 1), and εi,τi, and x∗

i are independent. GLM-EIV extends (5.6)
in at least three directions: first, GLM-EIV allows yi and xi to follow exponential family (i.e. not just
Gaussian) distributions; second, GLM-EIV allows yi and xi to be related to x∗

i through arbitrary (i.e.
not just linear) link functions; and finally, GLM-EIV allows confounders zi to impact both xi and yi.
Therefore, xi and yi can be conditionally dependent given x∗

i , enabling GLM-EIV to capture more
complex dependence relationships between xi and yi than is possible in (5.6) or other standard
measurement error models.

5.2. Estimation and inference, and computational infrastructure
We derived an EM algorithm (Algorithm 1) to estimate the parameters of the GLM-EIV model. We
briefly introduce some notation. Let βm = [βm

0 , βm
1 , γm]T be the vector of unknown gene model

parameters and βg = [βg
0 , βg

1 , γg]T the vector of unknown gRNA model parameters. Let m, g, om,
and og be the vector of gene expressions, gRNA expressions, gene library sizes, and gRNA library
sizes. Finally, let X be the observed design matrix; let X̃ be the augmented design matrix that results
from concatenating the column of (unobserved) pis to X; and let X̃(0) (resp., X̃(1)) be the matrix
that results from setting all of the pis in X̃ to 0 (resp., 1).

The E step entails computing the membership probability (i.e. the probability of perturba-
tion) in each cell. The membership probability Ti(1) of cell i ∈ {1, . . . , n} given the current
parameter estimates (β

(t)
m , β(t)

g , π(t)) andobserveddata (mi, gi) is Ti(1) = P(pi = 1|Mi = mi, Gi =
gi, β

(t)
m , β(t)

g , π(t)). We can calculate this quantity by applying (i) Bayes rule, (ii) the conditional
independencepropertyof Mi and Gi, (iii) thedensity of Mi and Gi, and (iv) a log-sum-exp-type trick
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to ensure numerical stability. Next, we produce updated estimates π(t+1), β(t+1)
g , and β

(t+1)
m of the

parameters by maximizing the M step objective function. It turns out that maximizing this objective
function is equivalent to setting π(t+1) to the mean of the current membership probabilities and
setting β

(t+1)
g and β

(t+1)
m to the fitted coefficients of a GLM weighted by the current membership

probabilities (Algorithm 1). We iterate through the E and M steps until the log likelihood (B.1)
converges (Supplementary Appendix B). Our EM algorithm is reminiscent of (but distinct from)
that of Ibrahim (1990), who also applied weighted GLM solvers to carry out an M step of an EM
algorithm.

Algorithm 1 EM algorithm for GLM-EIV model.
Require: Pilot estimates βcurr

m , βcurr
g , and π curr; data m, g, om, og , and X; gene expression distribu-

tion fm and link function rm; gRNA expression distribution fg and link function rg .
while Not converged do

for i ∈ {1, . . . , n} do � E step
Ti(1) ← P

(
pi = 1|Mi = mi, Gi = gi, βcurr

m , βcurr
g , π curr

)

Ti(0) ← 1 − Ti(1)
end for
π curr ← (1/n)

∑n
i=1 Ti(1) � M step

w ← [T1(0), T2(0), . . . , Tn(0), T1(1), T2(1), . . . , Tn(1)]T

for k ∈ {g, m} do
Fit a GLM GLMk with responses [k, k]T , offsets [ok, ok]T , weights w, design matrix
[X̃(0)T , X̃(1)T]T , distribution fk, and link function rk.
Set βcurr

k to the estimated coefficients of GLMk.
end for
Compute log likelihood using βcurr

m , βcurr
g , and π curr.

end while
β̂m ← βcurr

m ; β̂g ← βcurr
g ; π̂ ← π curr.

return (β̂m, β̂g , π̂)

After fitting the model, we perform inference on the estimated parameters. The easiest approach,
given the complexity of the log likelihood, would be to run a bootstrap. This strategy, however, is
prohibitively slow, as the data are large and the EM algorithm is iterative. Therefore, we derived
an analytic formula for the asymptotic observed information matrix using Louis’s Theorem (Louis
(1982); Supplementary Appendix B). Leveraging this analytic formula, we can calculate standard
errors quickly, enabling us to perform inference in practice on real, large-scale data.

A downside of the EM algorithm (Algorithm 1) is that it requires fitting many GLMs. Assuming
that we run the algorithm 15 times using randomly generated pilot estimates (to improve chances
of convergence to the global maximum), and assuming that the algorithm iterates through E and M
steps about 10 times per run, we must fit approximately 300 GLMs. (These numbers are based on
exploratory applications of the method to real and simulated data.) We instead devised a strategy
to produce a highly accurate pilot estimate of the true parameters, enabling us to run the algorithm
once and converge upon the MLE within a few iterations. The strategy involves layering several
statistical “tricks” on top of one another. Briefly, we first obtain pilot estimates for the nuisance
parameters βm

0 , γm, βg
0 , and γg by regressing the gene and gRNA expression vectors onto the

observed design matrix X; the resulting estimates are close to the full GLM-EIV model maximum
likelihood estimates because the probability of perturbation is small.Next, we obtain pilot estimates
forπ and the perturbation effect parametersβm

1 andβ
g
1 by estimating a simplified, “reduced” GLM-

EIV model; this second step does not require fitting any GLMs. (See Appendix C for additional
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details.) Overall, the statistical accelerations reduce the number of GLMs that must be fit to < 10
in most cases.

Next, we developed a computational infrastructure to apply GLM-EIV to large-scale, single-
cell CRISPR screen data. The infrastructure leverages Nextflow, a programming language that
facilitates building data-intensive pipelines, and ondisc, an R/C++ package that we developed
(in a separate project; preprint forthcoming) to facilitate large-scale computing on single-cell data.
Nextflow and ondisc together enable the construction of highly portable single-cell pipelines:
one can analyze data out-of-memory on a laptop or in a distributed fashion across hundreds of
processors on a cloud (e.g. Microsoft Azure, Google Cloud) or high-performance cluster. Leverag-
ing these technologies, we built a Docker-containerized pipeline for deploying GLM-EIV at-scale.
The pipeline recycles computation when possible, saving a considerable amount of compute; see
Supplementary Appendix C.3 for details. Overall, the statistical accelerations and computational
infrastructure make the deployment of GLM-EIV to large-scale single-cell CRISPR screen quite
feasible.

5.3. The gRNA mixture assignment method
Thus far, we have described two methods for estimating the effect of a perturbation on gene
expression: the simple thresholding method and the more complex GLM-EIV method. A third
approach of intermediate complexity—which we call the “gRNA mixture assignment” approach—
is to (i) fit a mixture model to the gRNA count distribution, (ii) use this fitted mixture model
to impute perturbation identities onto cells, and then (iii) regress the gene expressions onto
the imputed perturbation indicators (as well as the remaining covariates). The gRNA mixture
assignment approach enjoys at least two strengths relative to the simpler thresholding approach:
the former negates the threshold tuning parameter and can account for variation across cells due to
covariates.

Replogle et al. (2020) proposed a simple gRNA mixture assignment strategy that involves fitting
aPoisson–Gaussianmixturemodel to the log-transformedgRNAcounts and then assigning gRNAs
to cells using the posterior perturbation probabilities of the fitted model. (We call this method
the Nat. Biotech. 2020 method, representing the journal and year in which the method appeared.)
Unfortunately, thismethodposes several conceptual andpractical difficulties. First, it is unclear how
the method fits the Poisson component of the mixture distribution to the log-transformed gRNA
expressions, as the transformed expressions are not integer-valued. Second, due to recent changes
in the Python ecosystem, we and others have had difficulty with installing the Python package upon
which theNat. Biotech. 2020method relies. (See SupplementaryAppendix D for further discussion
of the Nat. Biotech. 2020 method.)

Following Replogle et al. (2020), we devised an alternate gRNA mixture assignment strategy
that is tethered more closely to the data-generating mechanism. For a given gRNA, we regress
the gRNA counts onto the (latent) perturbation indicator and covariates (while ignoring the gene
expressions; model 5.5). We assign perturbation identities to cells by thresholding the posterior
perturbation probabilities of the fitted model at 1/2. The latent variable gRNA model is a subset
of the full GLM-EIV model (5.4–5.5). Thus, we used the GLM-EIV EM algorithm to fit the latent
variable gRNAmodel, enablingus to exploit the various techniques thatwedeveloped in the context
of GLM-EIV for obtaining fast and numerically stable estimates.

6. SI MUL ATION ST UDY
We conducted a comprehensive suite of six simulation studies to compare the empirical per-
formance of GLM-EIV, the thresholding method, and the gRNA mixture assignment method.
(We coupled the latter method to standard regression on the imputed perturbation assignments
to estimate the perturbation effect size.) We describe one simulation study here and defer the
remaining simulation studies to the Supplementary Appendix G. We generated data on n = 50, 000
cells from the GLM-EIV model, setting the target of inference βm

1 to log(0.25) and the probability
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of perturbation π to 0.02. βm
1 = log(0.25) represents a decrease in gene expression by a factor of

4, which is a fairly large effect size on the order of what we might observe for a positive control
pair. We included “sequencing batch” (modeled as a Bernoulli-distributed variable) as a covariate
and sequencing depth (modeled as a Poisson-distributed variable) as an offset. We varied the
log-fold change in gRNA expression, βg

1 , over a grid on the interval [log(1), log(4)]; β
g
1 controls

problem difficulty, with higher values corresponding to easier problem settings. We generated
the gene expression count data from two response distributions: Poisson and negative binomial
(size parameter fixed at s = 20 for the latter; see simulation study 3 for an exploration of different
values of s). We generated the gRNA count data from a Poisson distribution. For each parameter
setting (definedby aβ

g
1-distributionpair),we synthesized nsim = 500 i.i.d. datasets. Supplementary

Appendix G compares the parameter values used in the simulation study to those estimated from
real data.

We applied four methods to the simulated data: “vanilla” GLM-EIV, accelerated GLM-EIV,
thresholded regression, and the gRNA mixture assignment method. We used the Bayes-optimal
decision boundary for classification as the threshold for the thresholding method (as derived
in Supplementary Section A.12). We ran all methods on the negative binomial data twice: once
treating the size parameter s as a known constant and once treating s as unknown. In the latter case
we used the glm.nb function from the MASS package to estimate s before applying the methods
(Ripley et al. 2013). We note that none of the methods accounts for the error in estimating s when
computing coefficient standard errors. We display the results of the simulation study in Fig. 3.
Columns correspond to distributions (i.e. Poisson, NB with known s, and NB with unknown s), and
rows correspond to performance metrics (i.e. bias, mean squared error, CI coverage rate (nominal
rate 95%), CI width, and method run time). The β

g
1 parameter is plotted on the horizontal axis,

and the methods are depicted in different colors. (GLM-EIV is masked by accelerated GLM-EIV in
several panels.)

We found that GLM-EIV outperformed the gRNA mixture method and that the gRNA mixture
method outperformed thresholded regression across the metrics of bias, mean squaured error,
and confidence interval coverage. We reasoned that GLM-EIV outperformed the gRNA mixture
method because (i) GLM-EIV leveraged information from both modalities (rather than the gRNA
modality alone) to assign perturbation identities to cells and (ii) GLM-EIV produced soft rather
than hard assignments, capturing the inherent uncertainty in whether a perturbation occurred.
We additionally reasoned that the gRNA mixture method outperformed thresholded regression
because the gRNA mixture method better accounted for heterogeneity across cells due to the
covariates. Notably, accelerated GLM-EIV performed as well as vanilla GLM-EIV on all statistical
metrics (rows 1–4) despite having substantially lower computational cost (bottom row). In fact,
the running time of accelerated GLM-EIV was almost within an order of magnitude of that of
the thresholding method. As expected, the confidence interval coverage of the methods degraded
somewhat in the negative binomial case under estimated s as opposed to known s, but this difference
was not substantial. Supplementary Appendix G presents additional simulation studies in which we
generate data from a Gaussian model, vary βm

1 and s, and assess the performance of the methods on
data containing unmeasured covariates and outliers.

7. R E A L DATA A PPLIC ATION I: ESTI M ATING PERT UR BATION
EFFECTS ON H IGH-MOI DATA

Leveraging our computational infrastructure, we applied GLM-EIV and the thresholding method
to analyze the entire Gasperini and Xie datasets. GLM-EIV ran in under two days on both datasets,
using no more than 250 processors and two gigabytes of memory per process. We report only
the most important aspects of the analysis and results in the main text; full details are available in
Supplementary Appendix E. We set the threshold in the thresholding method to the approximate
Bayes-optimal decision boundary, as our theoretical analyses and simulation studies indicated that
the Bayes-optimal decision boundary is a good choice for the threshold when the gRNA count
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Figure 3. Simulation study. Columns correspond to distributions (Poisson, NB with known s, NB with
estimated s), and rows correspond to metrics (bias, MSE, coverage, CI width, and time). Methods are
shown in different colors; GLM-EIV (green) is masked by accelerated GLM-EIV (red) in several panels.
Generally, GLM-EIV (both accelerated and nonaccelerated versions) outperformed the
gRNA-mixture/NB-regression method, which in turn outperformed the thresholding/NB-regression
method. The rejection probability (i.e. the probability of rejecting the null hypothesis H0 : βm

1 = 0 at
level α = 0.05) was strictly 1 across methods and parameter settings, likely because the effect size was
fairly large.

distribution is well-separated. Operating under the assumption that the effect of the perturbation
ongRNAexpression is similar across pairs,we leveraged thefittedGLM-EIVmodels to approximate
the Bayes boundary in the following way: we (i) sampled several hundred gene–perturbation
pairs, (ii) extracted the fitted values β̂g and π̂ from the GLM-EIV models fitted to these pairs,

(iii) computed the median β̂g and π̂ across the β̂gs and π̂s, and (iv) used β̂g and π̂ to estimate
a dataset-wide Bayes-optimal decision boundary (Section A.12). We repeated this procedure on
both datasets, yielding a threshold of 3 for Gasperini and 7 for Xie.
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Figure 4. Applying GLM-EIV to analyze large-scale, high-MOI data. a, b) Estimates for fold change
produced by GLM-EIV and thresholded regression on Gasperini (a) and Xie (b) negative control pairs.
c, d) Estimates produced by GLM-EIV and thresholded regression on two positive control pairs—LRIF1
(a) and NDUFA2 (b)—plotted as a function of excess background contamination. Grey bands, 95% CIs
for the target of inference outputted by the methods. e, f) Median relative estimate change (REC; e) and
confidence interval coverage rate (f) across all 322 positive control pairs, plotted as a function of excess
background contamination. c–f) Together illustrate that GLM-EIV demonstrated greater stability than
thresholded regression as background contamination increased.

We compared GLM-EIV to thresholded regression on the real data, focusing specifically on
the negative control pairs (i.e. gene-perturbation pairs for which the ground truth fold change
is known to be 1; Supplementary Appendix E). We found that GLM-EIV and the thresholding
method produced similar results (Fig. 4a, b): estimates, CI coverage rates, and CI widths were
concordant. CI coverage rates, which ranged from 87.7% to 91.2%, were slightly below the nominal
rate of 95%, likely due to mild model misspecification. The estimated effect of the perturbation on
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gRNA expression exp(β̂
g
1) was unexpectedly large: the 95% CI for this parameter (averaged across

pairs) was [4306, 5186] and [300, 316] on the Gasperini and Xie data, respectively. We reasoned
that the datasets lay in a region of the parameter space in which thresholding is a tenable strategy
(provided the threshold is selected well). However, this was not obvious a priori and may not be
the case for other datasets.Wenote thatGLM-EIVproduced outlier estimates (defined as estimated
fold change < 0.75 or > 1.25) on a small (< 2.5% on Gasperini, < 0.05% on Xie) number of pairs
consisting of a handful of genes, likely due to nonglobal EM convergence. These outliers are not
plotted in Fig. 4a, b but were used to compute the CI coverage reported in the inset tables.

To evaluate performance of GLM-EIV versus thresholding in more challenging settings, we
increased the difficulty of the perturbation assignment problem by generating partially synthetic
datasets. First, for a given pair, we sampled gRNA counts directly from the fitted GLM-EIV
model. Next, to simulate elevated background contamination, we sampled gRNA counts from a
slightly modified version of the fitted model in which we increased the mean gRNA expression of
unperturbed cells while holding constant the mean gRNA expression of perturbed cells. We defined
a parameter called “excess background contamination” (normed to take values in [0, 1]) to quantify
the relative distance between the unperturbed and perturbed gRNA count distributions. We held
fixed the real-data gene expressions, library sizes, covariates, and fitted perturbation probabilities in
all settings.

We generated partially synthetic data in the above manner for each of the 322 positive control
pairs in the Gasperini dataset, varying excess background contamination over the interval [0, 0.4].
We then applied GLM-EIV and the thresholding method to analyze the data. We present results
on two example pairs (the pair containing gene LRIF1 and the pair containing gene NDUFA2) in
Fig. 4c, d. We observed that the estimate produced by the methods on the raw data (depicted as a
horizontal black line) coincided almost exactly with the estimate produced by the methods on the
partially synthetic data generated by setting excess background contamination to zero (This result
replicated across nearly all pairs; average relative difference 0.003.) We additionally observed that as
excess background contamination increased, the performance of thresholded regression degraded
considerably while that of GLM-EIV remained stable.

We generalized the above analysis to the entire set of positive control pairs. First, for each pair we
computed the “relative estimate change” (REC) as a function of excess background contamination,
defined as the relative difference between the estimate at a given level of excess contamination and
zero excess contamination (Fig. 4d). Next, we computed the median REC across all positive control
pairs (Fig. 4e; upper and lower bands indicate the pointwise interquartile range of the REC). As
excess background contamination increased, thresholded regression exhibited severe attenuation
bias (as reflected by large median REC values); GLM-EIV, by contrast, remained mostly stable.
Finally, letting β̂m

1 denote the estimate obtained on the raw data, we computed the CI coverage
of β̂m

1 as a function of excess contamination. Under the assumption that β̂m
1 is close to the true

parameter βm
1 , the CI coverage of the former is similar to that of the latter. We computed the

CI coverage of β̂m
1 by calculating each individual pair’s coverage of β̂m

1 (across the Monte Carlo
replicates) and then averaging this quantity across all pairs. GLM-EIV exhibited significantly higher
CI coverage than thresholded regression as the data became increasingly contaminated (Fig. 4f;
bands indicate 95% pointwise CIs). Coverage rates were slightly above the nominal level of 95%
in some settings because we covered an estimate of βm

1 rather than βm
1 itself, leading to mild

“overfitting.” Nonetheless, this experiment was meaningful to assess the stability of both methods
to elevated background contamination.

8. R E A L DATA A PPLIC ATION II: A SSIGNING PERTUR BATIONS TO
CELL S ON LOW-M OI DATA

We sought to explore whether the gRNA mixture assignment method that we proposed in Sec-
tion 5.3—which is in effect a special case of GLM-EIV—might be an independently useful tool for
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assigning gRNAs to cells on real single-cell CRISPR screen data. We applied the gRNA mixture
assignment method to assign gRNAs to cells on a low multiplicity-of-infection (or MOI) single-
cell CRISPR screen of immune cells (Papalexi et al. 2021). (A low-MOI dataset, in contrast to a
high-MOI dataset, is one in which the experimenter has aimed to insert exactly one perturbation
into each cell.) We elected to assess the performance of the gRNA mixture assignment method on
low-MOI data because the “ground truth” gRNA-to-cell mapping is easier to ascertain in low MOI
than in high MOI. The majority of cells in a low-MOI screen contains a single perturbation, while
a fraction of cells contains zero or two or more perturbations. Thus, if a given gRNA constitutes a
large fraction (say, > 25%) of the gRNA reads in a given cell, we can confidently map that gRNA
to that cell. Athough not foolproof, this strategy yields a reasonable approximation to the ground
truth in low MOI. (There is no analogous strategy for obtaining ground truth gRNA assignments
in high MOI, as each cell in high MOI contains many gRNAs, and the number of gRNAs per cell is
indeterminate and variable.)

We used our proposed gRNA mixture assignment method to obtain gRNA-to-cell assignments
for each gRNA in the low-MOI dataset (after restricting our attention to the 95% most highly
expressed gRNAs). We included the standard technical factors as covariates, including biological
replicate. We compared the mixture-model-based gRNA assignments to the ground truth assign-
ments; the latter were obtained in the manner described above. Encouragingly, we found that these
two methods produced near-identical results. For example, the mixture model determined that
gRNA “CUL3g2” was present in 141 cells (and absent in the rest), while the ground truth method
indicated that “CUL3g2” was present in 137 cells (Fig. 5a). Treating the ground truth assignments
as a reference, we constructed a confusion matrix to assess the classification accuracy of the mixture
method assignments on CUL3g2 (Fig. 5b). The sensitivity, specificity, and balanced accuracy of the
mixture method assignments were high (1.000, 0.9998, and 0.9998, respectively).

We replicated this analysis across the entire set of gRNAs, finding that the mixture method as-
signments exhibited consistently high concordance with the ground truth assignments as measured
by sensitivity, specificity, and balanced accuracy (although there were a few outliers; Fig. 5c). We
concluded that the mixture assignment method was a statistically principled, fast, and numerically
stable strategy for the recapitulating the ground truth assignments with high fidelity. We sought to
compare our gRNA mixture assignment method against the Nat. Biotech. 2020 Poisson-Gaussian
mixture method. Unfortunately, as discussed elsewhere (Section 5.3 and Appendix D), we were
unable to get the Nat. Biotech. 2020 method (or approximations thereof written in R) working.
We note that, in contrast to the Nat. Biotech. 2020 method, the proposed method allows for the
inclusion of covariates (e.g. library size and batch) and models the gRNA counts directly.

9. DISCUSSION
In this work, we studied the problem of estimating the effect sizes of perturbations on changes in
gene expression in high-MOI single-cell CRISPR screens, focusing specifically on the challenge that
the perturbation is unobserved. We showed through empirical, theoretical, and simulation analyses
that the commonly used thresholdingmethodposes several difficulties: there exist settings (i.e. high
background contamination settings) in which thresholding is not a tenable strategy, and in settings
in which thresholding is a tenable strategy (i.e. low background contamination settings), selecting
a good threshold is challenging and consequential. Next, we developed GLM-EIV, a method that
jointly models the gene and gRNA modalities to implicitly assign perturbation identities to cells
and estimate perturbation effect sizes, thereby overcoming limitations of the thresholding method.
GLM-EIV demonstrated significantly improved performance relative to the thresholding method
in high background contamination settings on both synthetic and realistic semi-synthetic data.

However, GLM-EIV and the thresholding method demonstrated roughly similar performance
on the two real high-MOI datasets that we examined, as the real data exhibited lower background
contamination than anticipated. We believe that this is an interesting finding in itself; moreover,
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Figure 5. The gRNA-only mixture assignment functionality of GLM-EIV accurately assigns gRNAs to
cells on real low-MOI data. a) Each point represents a cell. The position of each cell along the vertical axis
indicates the number of gRNA reads (from gRNA “CUL3g2”) observed in that cell. Cells in the left
column were classified by the gRNA mixture model as perturbed, while those in the right column were
classified as unperturbed. Purple (resp., red) cells were classified by the ground truth method as perturbed
(resp., unperturbed). b) A confusion matrix comparing the gRNA-to-cell mixture model classifications
against the ground truth classifications for gRNA “CUL3g2.” The two sets of classifications were highly
concordant, as quantified by balanced accuracy, sensitivity, and specificity metrics. c) The balanced
accuracy (left), sensitivity (middle), and specificity (right) of the gRNA mixture assignment method
across all gRNAs. d) The proposed data analysis workflow. If the level of background contamination is
low, then the gRNA mixture method can be used to impute perturbation identities onto cells, which can
then be plugged into downstream analytic tools, such as negative binomial regression or SCEPTRE. On
the other hand, if the level of background contamination is high, then the entire GLM-EIV model can be
used to analyze the data.

future datasets may demonstrate higher levels of background contamination, in which case GLM-
EIV could serve as an immediately applicable analytic tool. Finally, the gRNA mixture assignment
method, which under the hood exploits the estimation machinery of GLM-EIV, is a statistically
principled, numerically stable, fast, and accurate strategy for obtaining gRNA-to-cell assignments
on real data; these assignments can used as input to downstream methods (e.g. negative binomial
regression or SCEPTRE; Fig. 5d).

We anticipate that GLM-EIV could be applied to other types of multimodal single-cell data, such
as single-cell chromatin accessibility assays. A question of interest in such experiments is whether
chromatin state (i.e. closed or open) is associated with the expression of a gene or abundance of
a protein (Mimitou et al. 2021). We do not directly observe the chromatin state of a cell; instead,
we observe tagged DNA fragments that serve as count-based proxies for whether a given region of
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chromatin is open or closed. GLM-EIV might be applied in such experiments to aid in the selection
of thresholds or to analyze whole datasets. The full GLM-EIV model potentially could be applied
to analyze low-MOI single-cell CRISPR screen data, but we anticipate that the relative ease of
assigning gRNAs to cells in lowMOI(as described in Section8)mayobviate the need forGLM-EIV
in that setting.

The closest parallels to GLM-EIV in the statistical methodology literature are Grün and Leisch
(2008) and Ibrahim (1990). Grün and Leisch derived a method for estimation and inference in
a k-component mixture of GLMs. While we prefer to view GLM-EIV as a generalized errors-in-
variables method, the GLM-EIV model is equivalent to a two-component mixture of products
of GLM densities. Ibrahim proposed a procedure for fitting GLMs in the presence of missing-
at-random covariates. Our method, by contrast, involves fitting two conditionally independent
GLMs in the presence of a totally latent covariate. Thus, while Ibrahim and Grün & Leisch are
helpful references, our estimation and inference tasks are more complex than theirs. Next, Aigner
(1973) and Savoca (2000) proposed measurement error models that consist of unobserved binary
rather than continuous predictors; the latter are more commonly used in measurement error models.
GLM-EIV likewise consists of a latent binary predictor, but unlike Aigner and Savoca, GLM-EIV
handles a much broader class of exponential family-generated data. Finally, GLM-EIV accounts for
a common source of measurement error between the predictor and response, a property not shared
by classical measurement error models (Carroll et al. 2006). Additional related work is relayed in
Supplementary Appendix F.

GLM-EIV might be applied to areas beyond genomics, such as psychology. Some psychological
constructs (e.g. presence or absence of a social media addiction) are latent and can be assessed only
through an imperfect proxy (e.g. the number of times one has checked social media). Researchers
might use GLM-EIV to regress an outcome variable (e.g. self-reported well-being) onto the latent
construct via the imperfect proxy, potentially resolving challenges related to attenuation bias and
threshold selection. Applications to psychology and other areas are a topic of future investigation.

SOFT WA R E, CODE, A ND R E SULTS
The gRNA-only mixture assignment functionality of GLM-EIV is implemented in our scep-
tre toolkit for single-cell CRISPR screen analysis (github.com/Katsevich-Lab/
sceptre). The sceptre user manual (timothy-barry.github.io/sceptre-
book/sceptre.html) presents a detailed guide on analyzing data using the sceptre
software, including several sections on assigning gRNAs to cells using the mixture assignment
method introduced in this work.

Results are deposited at upenn.box.com/v/glmeiv-files-v1. Github repositories
containing manuscript replication code, the glmeiv R package, and the cloud/HPC-scale GLM-
EIV pipeline are available at github.com/timothy-barry/glmeiv-manuscript,
github.com/timothy-barry/glmeiv, and github.com/timothy-barry/
glmeiv-pipeline, respectively. Detailed replication instructions are available in the first
repository.
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