

applications to drug discovery.

1. Design a library of **CRISPR** perturbations

and struggle to scale to large datasets.

Let it SNO: Massive-scale perturb-seq analysis with **SCEPTRE, Nextflow, and ondisc (SNO)**

Timothy Barry, Joseph Deutsch, Xihong Lin, & Eugene Katsevich

Harvard University and University of Pennsylvania

0.010 0.100

New statistical & algorithmic methods

• Robust negative binomial (NB) regression by resampling NB score statistics.

- 4Sparsity-exploiting algorithm for efficiently computing GLM score tests.
- Space- and time-optimal algorithm for transposing large, sparse matrices out-of-core.
- Algorithm for recycling compute across a large number of permutation tests.

Statistical & computational performance

Trans analysis of high multiplicity-of-infection (MOI) CRISPRi screen of enhancers (Gasperini, 2019) and low-MOI CRISPRi screen of genes (Replogle 2022).

Dataset	Gasperini	Replogle	
Number of cells	200K +	610K +	1e-
Number of pairs	170 million	93 million	1e-(
Number of processors	152	47	1
Running time	8.5 hours	5.8 hours	16-0
Max memory	2.0 GB	2.0 GB	1e-(

SCEPTRE is recommended by 10x Genomics! 10X GENOMICS Products Analysis Guides

Single-cell CRISPR screen analysis with sceptre

